首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46052篇
  免费   5083篇
  国内免费   2768篇
电工技术   2487篇
综合类   3761篇
化学工业   12381篇
金属工艺   6055篇
机械仪表   2041篇
建筑科学   5309篇
矿业工程   941篇
能源动力   1842篇
轻工业   2089篇
水利工程   456篇
石油天然气   972篇
武器工业   662篇
无线电   1888篇
一般工业技术   9926篇
冶金工业   1662篇
原子能技术   190篇
自动化技术   1241篇
  2024年   129篇
  2023年   669篇
  2022年   1177篇
  2021年   1496篇
  2020年   1580篇
  2019年   1407篇
  2018年   1273篇
  2017年   1759篇
  2016年   1781篇
  2015年   1728篇
  2014年   2386篇
  2013年   2447篇
  2012年   3127篇
  2011年   3525篇
  2010年   2730篇
  2009年   2929篇
  2008年   2393篇
  2007年   3260篇
  2006年   3024篇
  2005年   2446篇
  2004年   2011篇
  2003年   1810篇
  2002年   1557篇
  2001年   1376篇
  2000年   1131篇
  1999年   904篇
  1998年   761篇
  1997年   627篇
  1996年   535篇
  1995年   458篇
  1994年   399篇
  1993年   322篇
  1992年   208篇
  1991年   164篇
  1990年   103篇
  1989年   63篇
  1988年   55篇
  1987年   33篇
  1986年   12篇
  1985年   27篇
  1984年   22篇
  1983年   11篇
  1982年   9篇
  1981年   3篇
  1980年   16篇
  1979年   8篇
  1964年   1篇
  1957年   1篇
  1956年   1篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
81.
《Ceramics International》2020,46(5):5850-5855
A well-distributed nano-silver hydroxyapatite composite has been successfully prepared by a one-pot synthesis method. Hydroxyapatite was separately synthesized by a sol-gel method, then impregnated with silver nanoparticles with the mediation of Uncaria gambir Roxb. leaf extract in the presence of three kinds of alkanolamine compound; monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) as capping agents. The effect of different capping agents on the properties of the silver nanoparticles and the nano-silver hydroxyapatite composite were studied. UV–visible spectrophotometer analysis exhibited absorbance peaks at 402–439 nm which specifically corresponds to spherical silver nanoparticles. Higher optical absorbance was observed in TEA-capped silver nanoparticles, than in DEA and MEA-capped ones. X-ray diffraction (XRD) analysis showed a highly crystalline hexagonal structure for hydroxyapatite and no detected metallic silver. However, the presence of 1.65% silver was confirmed by energy dispersive x-ray (EDX) spectroscopy analysis. Transmission electron microscopy (TEM) analysis revealed spherical silver nanoparticles with a size range of 2–62 nm (smallest mean diameter of 2 nm) adhered to the hydroxyapatite surface. The TEA capped impregnated silver nanoparticles were the smallest, corresponding to the best capping performance, followed by those capped by DEA and MEA. Small-sized nanoparticles on hydroxyapatite are beneficial for highly antibacterial bone implants.  相似文献   
82.
Flexible pressure sensors have potential applications in human motion monitoring and electronic skins. To satisfy the practical applications, pressure sensors with a high sensitivity, a low detection limit, a broad response range, and an excellent stability are highly needed. Here, a piezoresistive pressure sensor based on wavy‐structured single‐walled carbon nanotube/graphite flake/thermoplastic polyurethane (SWCNT/GF/TPU) composite film is fabricated by a prestretching process. Due to the random wavy structure, high conductivity, and good flexibility, the prepared sensor displays a low detection limit of 2 Pa, a wide sensing range of 0–60 kPa, and a high sensitivity of 5.49 kPa?1 for 0–50 Pa. Furthermore, the sensor shows a remarkable repeatability of over 1.1 × 104, 9.0 × 103, and 2.0 × 103 pressure loading/unloading cycles at 50 Pa, 500 Pa, and 30 kPa, respectively, and a fast responsibility of 100–150 ms of loading response time and 400–600 ms of relaxation time. Therefore, the pressure sensor is successfully adopted to monitor both the large‐scale human activities (e.g., walk and jump) and the small‐scale signals (e.g., wrist pulse). Furthermore, a sensor array is assembled to map the weight and shape of an object, indicating its various potential applications including human–machine interactions, human health monitoring, and other wearable electronics.  相似文献   
83.
Membrane technology has been considered a key factor for sustainable growth in high-efficiency gas separation. Current mixed matrix membranes (MMMs) technology is rising, but these membranes in the dense structure are having difficulties in operating at high pressures and scale up for commercialization. The purpose of this research is to synthesize composite MMMs (CMMMs) consisting of polyethersulfone (PES), carbon molecular sieve (CMS 1–5 wt %), and Novatex 2471 nonwoven fabric (support layer). The membranes' physical, chemical, and thermal properties were evaluated by different analytical equipment. The morphology of both PES and PES-CMS composite membranes had a porous and asymmetric structure, in which CMS was uniformly distributed in the polymer matrix. The thermal properties showed that the membranes were stable up to 350 °C with a single glass transition temperature. The functional groups in the membrane were confirmed by spectral analysis. The gas performance results showed that carbon dioxide permeance increased with increased CMS concentration and methane permeance decreased due to the hindering effect of CMS under similar operating conditions. The highest selectivity achieved was 12.774 using CMMM of 5 wt % of CMS at 10 bar, which on average was 137.80%, improved selectivity compared to pure PES membrane. The support layer was able to withstand high operating pressures and showed the ability to scale up. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48476.  相似文献   
84.
以环氧树脂为基体,短切玻璃纤维和玻璃纤维布为增强材料,通过RTM工艺制备了玻璃纤维增强环氧树脂(GF/EP)复合材料,并研究了RTM工艺制备玻璃纤维布增强环氧树脂(L-GF/EP)和短切玻璃纤维增强环氧树脂(S-GF/EP)复合材料的拉伸和弯曲性能,分析了开孔对两种复合材料拉伸性能的影响。结果表明:在拉伸过程中,开孔试样因孔边产生的应力集中,导致其拉伸强度与无孔试样相比下降了30%左右;玻纤铺层类型的不同对复合材料的力学性能具有显著影响;L-GF/EP复合材料内部结构完整,在载荷作用下,复合材料的弯曲断裂呈现一定的假塑性断裂模式,达到弯曲极限挠度值后,出现一定程度的回弹现象,其力学性能优于S-GF/EP复合材料。  相似文献   
85.
Cu matrix composites reinforced by TiB2/TiN ceramic reinforcements (Cu/TBN composites) were prepared by hot pressing method. Prior to the hot pressing, Cu/TiB2/TiN composite powders (CTBN powders), which were used as the starting materials of Cu/TBN composites, were fabricated by self-propagating high-temperature synthesis method. The CTBN particles were found to be in a special core-shell structure with a Cu-Ti alloy core and a TiB2/TiN ceramic shell. The test results presented obvious improvements in mechanical properties. The highest ultimate tensile strength reached up to 297 MPa, 77 MPa higher than that of Cu. And the highest hardness reached up to 70.7 HRF, 15.7 HRF higher than that of Cu. A comparative study indicated that the core-shell structured particles could bring about more obvious strengthening effect than the traditional irregularly shaped particles, which was due to the improved Cu/ceramics interfacial bonding, the linkage strengthening effect of both TiB2 and TiN, and higher load bearing ability of the core-shell structured reinforcements.  相似文献   
86.
利用多弧离子镀-磁控溅射复合技术通过改变脉冲偏压在Si片与SS304基体表面制备了TiAlCN薄膜,研究了不同脉冲偏压对薄膜结构和力学性能的影响。薄膜成分、表面形貌、相结构及力学性能分别利用能量弥散X射线谱(EDS)、扫描电镜(SEM)、X射线衍射(XRD)和纳米压痕仪等设备进行表征。结果表明,随着脉冲负偏压的增加,薄膜中Ti元素的含量先减小后增大,而Al元素有相反的变化趋势。适当增大脉冲偏压,薄膜表面颗粒、凹坑等缺陷得到明显改善。物相分析表明TiAlCN薄膜主要由(Ti,Al)(C,N)相,Ti4N3-x相和Ti3Al相组成。薄膜平均硬度与弹性模量随脉冲负偏压的增加先增大后减小,在负偏压-200 V时达到最大值分别为36.8 GPa和410 GPa。  相似文献   
87.
采用无氰电镀工艺在TC4合金表面制备了Cu/石墨复合镀层,研究了镀层的组织结构和摩擦磨损行为。结果表明,采用无氰电镀方法能够在TC4合金表面制备出组织致密且与基体结合紧密的Cu/石墨复合镀层,但增加镀层中石墨的含量会降低镀层与基体合金的结合强度,并导致硬度小幅下降。摩擦磨损实验结果表明,Cu/石墨复合镀层具有优良的摩擦磨损防护性能,归因于石墨有效降低了镀层的摩擦系数和磨损率;对镀层磨损形貌、磨损产物和摩擦系数的综合分析结果表明,纯铜镀层的摩擦磨损机制主要为犁削磨损、黏着磨损和剥层磨损,Cu/石墨复合镀层的磨损机制为轻微的削层磨损和疲劳磨损。  相似文献   
88.
A comprehensive study of the phase composition, microstructure evolution, microhardness and wear performance of WC-12Co composite coatings fabricated by laser cladding using coaxial powder-feed mode was presented. It was shown that a combination of high scan speed and high laser energy density made WC on the edge of WC-12Co composite powders partially melt in liquid Co and 304 stainless steel matrix, and then new carbides consisting of lamellar WC and herringbone M3W3C (M=Fe, Co) were formed. Meanwhile, WC-12Co composite coatings with no porosity, cracks and drawbacks like decarburization were obtained, showing high densification and good metallurgical bonding with the substrate. Furthermore, a considerably high microhardness of HV0.3 1500-1600, low coefficient of friction of 0.55 and wear rate of (2.15±0.31)×10-7 mm3/(N·m) were achieved owing to the synergistic effect of excellent metallurgical bonding and fine microstructures of composite coating under laser power of 1500 W.  相似文献   
89.
A new class of core–shell adsorbents has been created by electrospun metal–organic framework (MOF) particles embedded in polymer nanofibers, which have provided many unique properties compared to the existing MOF coating technologies. For the first time, we demonstrate the improved adsorption selectivity of CO2 over N2 using electrospun polymer/ZIF-8 adsorbents in experiments. Furthermore, an analytical model based on the assumption that the diffusivity in core is 10 times higher than that in shell is developed to describe the theory of improved selectivity for core–shell adsorbents that is validated against a more accurate finite element model developed in COMSOL. Our model shows three regimes including exclusive shell uptake, linear core uptake, and asymptotic core uptake. These regimes are related to material properties and uptake times, which could be used as design criteria to balance core stability, maximum selectivity, and maximum uptake. An advanced HAADF STEM tomography (Movie S1 ) shows that the shell thickness in the case of polymer/ZIF-8 is on the order of 10 nm, allowing the regime of maximum selectivity to be realized. Kinetically limited adsorption tests at 45°C demonstrate that these composite fibers can perform in a regime of selectivity and uptake for the separation of CO2 and N2 that is unobtainable by either the MOF or fiber independently, showing a great potential for postcombustion CO2 capture.  相似文献   
90.
Interfacial polymerization (IP) is one of the most important methods for fabricating thin film composite (TFC) membranes. Understanding the film-formation mechanisms is of great value for developing membranes with enhanced performance. This work proposed a novel method to in situ characterize the film-formation kinetics via low coherence interferometry (LCI). The polyamide film formed at the liquid–substrate interface was scanned in real time; the polymerization induced significant variations in the optical properties around the reaction zone. After mitigating the effects of the perturbed interface, the surface-averaged intensity profiles provide a solid basis for analyzing the film-formation kinetics at various depths. In particular, the effects of the monomer concentrations were investigated to reveal the asymmetric growth and development of irregular substructures. All the characterization results confirm that the LCI-based characterization is a powerful tool for studying the structural evolution of the IP layer and thereby providing deeper insights for optimizing TFC membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号